Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.

Identifieur interne : 001161 ( Main/Exploration ); précédent : 001160; suivant : 001162

The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.

Auteurs : W A Prinz [États-Unis] ; F. Aslund ; A. Holmgren ; J. Beckwith

Source :

RBID : pubmed:9188456

Descripteurs français

English descriptors

Abstract

In Escherichia coli, two pathways use NADPH to reduce disulfide bonds that form in some cytoplasmic enzymes during catalysis: the thioredoxin system, which consists of thioredoxin reductase and thioredoxin, and the glutaredoxin system, composed of glutathione reductase, glutathione, and three glutaredoxins. These systems may also reduce disulfide bonds which form spontaneously in cytoplasmic proteins when E. coli is grown aerobically. We have investigated the role of both systems in determining the thiol-disulfide balance in the cytoplasm by determining the ability of protein disulfide bonds to form in mutants missing components of these systems. We find that both the thioredoxin and glutaredoxin systems contribute to reducing disulfide bonds in cytoplasmic proteins. In addition, these systems can partially substitute for each other in vivo since double mutants missing parts of both systems generally allow substantially more disulfide bond formation than mutants missing components of just one system. Some of these double mutants were found to require the addition of a disulfide reductant to the medium to grow well aerobically. Thus, E. coli requires either a functional thioredoxin or glutaredoxin system to reduce disulfide bonds which appear after each catalytic cycle in the essential enzyme ribonucleotide reductase and perhaps to reduce non-native disulfide bonds in cytoplasmic proteins. Our results suggest the existence of a novel thioredoxin in E. coli.

DOI: 10.1074/jbc.272.25.15661
PubMed: 9188456


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.</title>
<author>
<name sortKey="Prinz, W A" sort="Prinz, W A" uniqKey="Prinz W" first="W A" last="Prinz">W A Prinz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115</wicri:regionArea>
<wicri:noRegion>Massachusetts 02115</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Beckwith, J" sort="Beckwith, J" uniqKey="Beckwith J" first="J" last="Beckwith">J. Beckwith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9188456</idno>
<idno type="pmid">9188456</idno>
<idno type="doi">10.1074/jbc.272.25.15661</idno>
<idno type="wicri:Area/Main/Corpus">001170</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001170</idno>
<idno type="wicri:Area/Main/Curation">001170</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001170</idno>
<idno type="wicri:Area/Main/Exploration">001170</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.</title>
<author>
<name sortKey="Prinz, W A" sort="Prinz, W A" uniqKey="Prinz W" first="W A" last="Prinz">W A Prinz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115</wicri:regionArea>
<wicri:noRegion>Massachusetts 02115</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Beckwith, J" sort="Beckwith, J" uniqKey="Beckwith J" first="J" last="Beckwith">J. Beckwith</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (metabolism)</term>
<term>Cytoplasm (metabolism)</term>
<term>Diamide (pharmacology)</term>
<term>Disulfides (metabolism)</term>
<term>Escherichia coli (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Models, Chemical (MeSH)</term>
<term>NADP (metabolism)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Proteins (genetics)</term>
<term>Proteins (metabolism)</term>
<term>Sulfhydryl Reagents (pharmacology)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
<term>Urokinase-Type Plasminogen Activator (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activateur du plasminogène de type urokinase (métabolisme)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Disulfures (métabolisme)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Modèles chimiques (MeSH)</term>
<term>NADP (métabolisme)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Protéines (génétique)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Réactifs sulfhydryle (pharmacologie)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Tétraméthyl-diazènedicarboxamide (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Disulfides</term>
<term>NADP</term>
<term>Proteins</term>
<term>Thioredoxins</term>
<term>Urokinase-Type Plasminogen Activator</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Activateur du plasminogène de type urokinase</term>
<term>Cytoplasme</term>
<term>Disulfures</term>
<term>Escherichia coli</term>
<term>NADP</term>
<term>Protéines</term>
<term>Protéines bactériennes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Réactifs sulfhydryle</term>
<term>Tétraméthyl-diazènedicarboxamide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Diamide</term>
<term>Sulfhydryl Reagents</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
<term>Models, Chemical</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Modèles chimiques</term>
<term>Oxidoreductases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Escherichia coli, two pathways use NADPH to reduce disulfide bonds that form in some cytoplasmic enzymes during catalysis: the thioredoxin system, which consists of thioredoxin reductase and thioredoxin, and the glutaredoxin system, composed of glutathione reductase, glutathione, and three glutaredoxins. These systems may also reduce disulfide bonds which form spontaneously in cytoplasmic proteins when E. coli is grown aerobically. We have investigated the role of both systems in determining the thiol-disulfide balance in the cytoplasm by determining the ability of protein disulfide bonds to form in mutants missing components of these systems. We find that both the thioredoxin and glutaredoxin systems contribute to reducing disulfide bonds in cytoplasmic proteins. In addition, these systems can partially substitute for each other in vivo since double mutants missing parts of both systems generally allow substantially more disulfide bond formation than mutants missing components of just one system. Some of these double mutants were found to require the addition of a disulfide reductant to the medium to grow well aerobically. Thus, E. coli requires either a functional thioredoxin or glutaredoxin system to reduce disulfide bonds which appear after each catalytic cycle in the essential enzyme ribonucleotide reductase and perhaps to reduce non-native disulfide bonds in cytoplasmic proteins. Our results suggest the existence of a novel thioredoxin in E. coli.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9188456</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>272</Volume>
<Issue>25</Issue>
<PubDate>
<Year>1997</Year>
<Month>Jun</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.</ArticleTitle>
<Pagination>
<MedlinePgn>15661-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In Escherichia coli, two pathways use NADPH to reduce disulfide bonds that form in some cytoplasmic enzymes during catalysis: the thioredoxin system, which consists of thioredoxin reductase and thioredoxin, and the glutaredoxin system, composed of glutathione reductase, glutathione, and three glutaredoxins. These systems may also reduce disulfide bonds which form spontaneously in cytoplasmic proteins when E. coli is grown aerobically. We have investigated the role of both systems in determining the thiol-disulfide balance in the cytoplasm by determining the ability of protein disulfide bonds to form in mutants missing components of these systems. We find that both the thioredoxin and glutaredoxin systems contribute to reducing disulfide bonds in cytoplasmic proteins. In addition, these systems can partially substitute for each other in vivo since double mutants missing parts of both systems generally allow substantially more disulfide bond formation than mutants missing components of just one system. Some of these double mutants were found to require the addition of a disulfide reductant to the medium to grow well aerobically. Thus, E. coli requires either a functional thioredoxin or glutaredoxin system to reduce disulfide bonds which appear after each catalytic cycle in the essential enzyme ribonucleotide reductase and perhaps to reduce non-native disulfide bonds in cytoplasmic proteins. Our results suggest the existence of a novel thioredoxin in E. coli.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prinz</LastName>
<ForeName>W A</ForeName>
<Initials>WA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aslund</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beckwith</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C057842">SecB protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013439">Sulfhydryl Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>10465-78-8</RegistryNumber>
<NameOfSubstance UI="D003958">Diamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.73</RegistryNumber>
<NameOfSubstance UI="D014568">Urokinase-Type Plasminogen Activator</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003958" MajorTopicYN="N">Diamide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013439" MajorTopicYN="N">Sulfhydryl Reagents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014568" MajorTopicYN="N">Urokinase-Type Plasminogen Activator</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1997</Year>
<Month>6</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1997</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1997</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9188456</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.272.25.15661</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
<name sortKey="Beckwith, J" sort="Beckwith, J" uniqKey="Beckwith J" first="J" last="Beckwith">J. Beckwith</name>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Prinz, W A" sort="Prinz, W A" uniqKey="Prinz W" first="W A" last="Prinz">W A Prinz</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001161 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001161 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9188456
   |texte=   The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9188456" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020